

AVT-371 Research Workshop on

"Materials and technologies for electro-optical camouflage"

BiTs: Bispectral camouflage system based on switchable phase change materials (sPCM) and thermochromic coatings

Christian Teicht¹, Moritz Walter¹, Sandra Pappert¹, Thomas Fischer¹, Thomas Honke², Dirk Theiß²,

¹Fraunhofer ICT, Germany ²WTD52, Germany 24.05.2023

Outline

- **1.** Introduction Phase Change Materials (PCM) in Concealment applications
 - Phase Change Materials
 - Encapsulation methods
 - Experimental investigation of first laboratory samples
- 2. Switchable Phase Change Materials (sPCM)
 - Thermophysical properties and working principle
 - Simulation
- 3. The BiTs-project
 - SPCM: selection, modification, thermophysical properties
 - Thermochromic coatings
 - Construction and testing of laboratory samples

Introduction Phase Change Materials (PCM)

- Heat and cold storage in solid/liquid phase change
- Kerosenes, esters, sugar alcohols, fatty acids and salt hydrates
- Phase change temperature of T: -50 $^\circ\,$ C
- to about 100 $^\circ\,$ C
- Storage capacity: 155 kJ/kg to 300 kJ/kg
- Cycle stability >>1000 (organic materials)
- Volume change during phase change: up to 15%
- Thermal conductivity about 0.2 to 0.8 W/(m K)
- Viscosity: low viscosity 1 to 80 mPa s
- Density:
 - ~0.9 kg/L (organic PCM)
 - ~1.3 kg/L (salt hydrates)

Melting ice

Melting organic PCM

Thermophysical Properties of PCM

3-layer calorimeter

T-history calorimeter

T in °C

Working principle PCM camouflage

- Classic concealment Systems:
 - heat insulation layer -> heat accumulation
- reduction of IR signatur by heat storage

PCM micro-encapsulation

- In general only organic PCM can be microencapsulated \rightarrow flammable
- High thermal hysteresis due to microencapsulation
- Lower phase transition enthalpy
- Advantage: High leckage safety

Huang, Xiang; Zhu, Chuqiao; Lin, Yaxue; Fang, Guiyin (2019): Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review. In: Applied Thermal Engineering 147, S. 841–855. DOI: 10.1016/j.applthermaleng.2018.11.007.

Cemil, Alkan; Sari, Ahmet; Karaipekli, Ali; Uzun, Orhan (2009): Preparation, characterization, and thermal properties of microencapsulated phase changematerial for thermal energy storage. In: Solar Energy Materials & SolarCells 93 (1), S. 143–147

meso

macro

PCM meso- and macroencapsulation

- Meso- and macroencapsulation → higher volumetric heat storage density than microencapsulation, lower thermal hystersis
- Foil bag
 - HDPE, HDPE/PA, AL composite film... << 0.1mm thickness</p>
- Thermoforming
 - ➢ HDPE, PET-G... up to 1mm film thickness
- 3D printing
 - Stereolithography (SLA)
- Shape stabilized metal encapsulation
 - Made of aluminum

System Integration

PCM in concealment applications

- Time evolution of the wheel surface temperature
 - Motion travel
 - Slope / gradient
 - Frequent heavy braking

PCM in concealment applications

- Time evolution of wheel surface temperature
 - Motion travel
 - Slope / gradient
 - Frequent heavy braking

Without PCM

With PCM

Surface temperature (t = 96 min)

PCM laboratory demonstrators

- Macroencapsulated PCM (Rubitherm company):
 - Rigid encapsulation made of HDPE (plastic)
 - Dimension (LxWxH): 170 x 85 x 25 mm
 - Filling weight per capsule approx. 285 g
 PCM
 - > Air inclusions for mechanical stability

- PCM bag (ICT):
 - Flexible encapsulation made of aluminum composite foil.
 - Dimension (LxWxH): 195 x 195 x 10 mm
 - > Filling weight approx. 300 g PCM
 - Welded under vacuum (only minimal air inclusions)

AVT-RWS-371

PCM laboratory demonstrators

- Metal Encapsulation MI (ICT):
 - Rigid aluminum encapsulation
 - Dimension (LxWxH): 200 x 200 x 14 mm
 - Filling weight per battery approx. 290 g
 PCM
 - bars absorb compressive forces, only small, filling-related air pockets

- Metal Encapsulation MII (ICT):
 - Flexible encapsulation made of aluminum composite foil
 - Dimension (LxWxH): 200 x 200 x 27.6 mm
 - > Filling weight approx. 330 g PCM
 - Porous aluminum absorbs compressive forces, only small, filling-related air pockets
 - Porous aluminum conducts heat into deeper PCM
 - Thermal bonding optimized by graphite foil and contact springs

AVT-RWS-371

Investigation of laboratory samples

AVT-RWS-371

Laboratory samples experimental investigation

PCM 1D simulation code

• Changes in thermophysical properties and thermal coupling can be simulated using ICT-PCM-simulation code

Switchable PCM (sPCM)

- Switchable PCM = PCM with controlled supercooling
- sPCM are also included in 1D-simulation code

The BiTs project

• Idea Combination of:

- ➢ sPCM: Thermal control
- Thermochromic Coating: Change of color in visible range
- Main goal:
 - Proof of concept

sPCM- selection

- Salt hydrates are used because of their supercooling behaviour
 - Sodium acetate
 - Calcium chloride
- Salt hydrates are inflammable

	Sodium acetate	calcium chloride
	trihydrate (SAT)	hexahydrate (CCH)
Chemical formula	NaCH ₃ COO*3H ₂ O	CaCl ₂ *6H ₂ O
Phase change temperature [°C]	58	29
Phase change enthalpy [kJ/kg]	230	190
Degree of supercooling (stable) [K]	>50	>20
Thormal conductivity [W/(m.K)]	0.7 (solid)	1.01 (solid)
Thermal conductivity [vv/(IIFK)]	-	0.54 (liquid)

sPCM- modification

- Salt hydrates tend to phase segregation
- sPCM are gelated to improve cycle stability

AVT-RWS-371

sPCM- thermophysical properties

- Two types of PCM are needed for BiTs:
 - Nucleation gel to produce seed crystals (no supercooling)
 - Supercoolable storage gel that is activated using seed crystals
- Nucleation gel is created using special additives that prevent supercooling
- Thermophysical properties are measured using three layer calorimeter and T-history calorimeter

sPCM- encapsulation

- 1. Macroencapsulation is made of thermoformed plastic sheets
- 2. Macrocapsules are filled with liquid PCM and sealed thermally
- 3. The activation mechanism is glued to the macroencapsulation

3.

Functional testing of macroencapsulated sPCM

Spontaneous crystallization

Controlled activation

AVT-RWS-371

NATO UNCLASSIFIED + EOP

Slide 21

Functional testing of macroencapsulated sPCM

Influence of the proportion of gelling agents

Functional testing of macroencapsulated sPCM

Experimental investigation in heat flux test bench

Thermochromic coatings - overview

• Thermochromic colors with negative thermochromic effect = become transparent if color change temperature (CCT) is exceeded

Name	Manufacturer	Туре	Color		Color <u>change</u> temperature
Black Thermochromic 28	Dipon	Powder/Pigments	black		28 °C
Deep Blue Thermochromic 28	Dipon	Powder/Pigments	navy blue		28 °C
Purple Thermochromic 28	Dipon	Powder/Pigments	purple		28 °C
Cadet Blue Thermochromic 28	Dipon	Powder/Pigments	blue/turquoise	$-\tau r$	28 °C
Sea Green Thermochromic 28	Dipon	Powder/Pigments	dark green	12	28 °C
Canary Yellow Thermochromic 28	Dipon	Powder/Pigments	yellow	- (4)	28 °C
Medium Orchid Thermochromic 28	Dipon	Powder/Pigments	lighter purple	C. tot	28 °C
Pineapple Salmon <u>Thermochromic</u>	Dipon	Powder/Pigments	orange	Jak al	28 °C
Coral Red Thermochromic 28	Dipon	Powder/Pigments	red	and finder	28 °C
Kandydip © Deep Blue 28 °C	Dipon	Spray can/spray foil	dark blue		28 °C
Kandydip © Black 28 °C	Dipon	Spray can/spray foil	black		28 °C
Kandydip © Purple 28 °C	Dipon	Spray can/spray foil	purple		28 °C
Thermochromic varnish	Stardust Colors	Water-based acrylic varnish	black		10-15°C, 26-31 °C, 40-45 °C, 57-62 °C
Thermochromic varnish	Stardust Colors	Water-based acrylic varnish	blue	X	10-15°C, 26-31 °C
Thermochromic varnish	Stardust Colors	Water-based acrylic varnish	red		10-15°C, 26-31 °C

Thermochromic coatings - selection

No.	short name	manufacturer	color change temperature (CCT) [°C]	color
1	K28	Dipon	28	black
2	SC10_15	Stardust Colors	10-15	black
3	SC26_31	Stardust Colors	26-31	black
4	SC40_45	Stardust Colors	40-45	black
5	SC57_62	Stardust Colors	57-62	black

K28

SC57, SC40, SC26, SC10, Ref

AVT-RWS-371

Thermochromic coatings – testing (CCT)

emperature [°C]

Thermochromic coatings – testing (bending)

- Bending test according to DIN EN ISO 1519
- All thermochromic coatings withstand small deformations

BiTs- final laboratory samples

- More than 20 labroratory samples were produced
- Different combinations of PCM and thermochromic coatings were realized

A_SAT_SC26, A_SAT_SC_26_40 and A_SAT_SC40

BiTs- testing of laboratory A_SAT_SC_40

AVT-RWS-371

BiTs- testing of laboratory A_SAT3_SC_40

BiTs- testing of laboratory A_SAT3_SC26_SC_40

AVT-RWS-371

BiTs- testing of laboratory A_SAT3_SC26_SC_40

BiTs- testing of laboratory B_SAT3_SC_10_26_40_57

AVT-RWS-371

BiTs- testing of laboratory B_SAT3_SC_10_26_40_57

BiTs- testing of laboratory B_CCH_SC_10_26_40_57

BiTs- B_CCH_SC_10_26_40_57: melting

BiTs- B_CCH1_SC_10_26_40_57: crystallization

Summary and conclusions

- The functioning of conventional PCM in camouflage applications is demonstrated
- Switchable PCMs (sPCM) are introduced
- Salt hydrates can be used as non-flammable sPCM
- For sufficient long-term stability, PCMs based on salt hydrates are gelated
- The thermal performance of PCM camouflage systems depends on the exact material composition of the PCM and the encapsulation used
- The general functionality for a bispectral camouflage system based on sPCM and thermochromic coatings is demonstrated